
FMDB Transactions on Sustainable Computing Systems

Vol. 2, No.4, 2024

Designing Real-time Data Pipelines for Predictive Analytics in Large-scale

Systems

Divya Kodi1,*

1Department of Cyber Security, Truist Bank Financial, California, United States of America.

divyakarnam1987@gmail.com1

Abstract: With the age of data decision-making, real-time data pipelines have become an integral building block for predictive

analytics in big-scale systems. The article outlines the design, deployment, and challenge of creating reliable real-time data

pipelines for predictive analytics at scale. Data used in this research is sourced from an e-commerce site, involving transactional

information, customer behaviour, product surfing, and purchasing interactions. The data set consists of many structured and

unstructured data and perfectly signifies the complexity involved while processing high-velocity, big-scale data for predictive

analytics. We touch upon key domains such as ingestion, processing, storage, and analytics and also talk about varied

architectures such as Lambda and Kappa that offer fault-tolerant scalability. We talk about employing machine learning models

and consuming streams of real-time data and predictive models for deriving actionable insight for big systems. Apart from

technology and operations-based needs, this paper also describes the best practices, tools, and frameworks necessary to correctly

implement real-time data pipelines for predictive analytics. The study emphasizes pipeline optimization with low latency, high

throughput, and fault tolerance to enable long-term and precise predictions.

Keywords: Real-Time Data Pipelines; Predictive Analytics; Machine Learning; Large-Scale Systems; Data Ingestion; IoT

Sensor; Product Information; Social Media Data; Transactional Data; Product Surfing and Purchasing Interactions.

Received on: 02/05/2024, Revised on: 30/07/2024, Accepted on: 07/09/2024, Published on: 03/12/2024

Journal Homepage: https://www.fmdbpub.com/user/journals/details/FTSCS

DOI: https://doi.org/10.69888/FTSCS.2024.000294

Cite as: D. Kodi, “Designing Real-time Data Pipelines for Predictive Analytics in Large-scale Systems,” FMDB Transactions

on Sustainable Computing Systems., vol. 2, no. 4, pp. 178–188, 2024.

Copyright © 2024 D. Kodi, licensed to Fernando Martins De Bulhão (FMDB) Publishing Company. This is an open access

article distributed under CC BY-NC-SA 4.0, which allows unlimited use, distribution, and reproduction in any medium with

proper attribution.

1. Introduction

Predictive analytics is one of the indispensable tools of the big systems universe for enhanced decision-making and performance

operations. Predictive analytics uses past data, statistical models, and machine learning algorithms to predict what will happen

in the future. But in an increasingly dynamic, data-driven world, sometimes the past isn't good enough. The real-time data

pipeline is a response to the need to handle real-time data, making data from various sources available in a steady flow of data

with no latency, allowing organizations to make faster data-driven decisions [1]. Real-time data streams are constructed for

low-latency, high-throughput processing of big-data sizes, apparently coming from an IoT sensor secondarily of user action,

social networks, and online transactions [2]. Some elements within the real-time data pipelines include processing, analytics,

storage, and data ingestion. The challenge is to develop pipes that scale in terms of handling larger volumes and velocity of

*Corresponding author.

178

https://www.fmdbpub.com/user/journals/details/FTSCS
https://creativecommons.org/licenses/by-nc-sa/4.0/

Vol. 2, No.4, 2024

data and ensuring prediction models that come out of such data are actionable and accurate [3]. Being capable of sustaining

low latency in data processing volumes is critical in ensuring timely decisions are possible.

One of the core goals of this paper is to discuss design elements and procedures to build such pipelines. We will focus on some

of the most significant aspects, such as data ingestion, data transformation, storage, and real-time analytics [4]. Throughout the

rest of this text, we publish literature as we come across it to gain insight into contemporary art at the time of writing regarding

real-time data pipeline architecture [5]. Various methodologies, such as the Lambda and Kappa architectures, offer solutions

to processing real-time data at scale. The architectures outline how it is possible to make batch and stream processing have the

ability to exist in a way that achieves optimal system scalability and efficiency [6].

Real-time data processing and integration of machine learning models play an important role in making the process of

organizations real-time processing of the data and obtaining prediction thus whereby with the assistance of analytics. Integrating

the machine learning model into the real-time data processing pipeline allows the choice to be made automatically, and there

can be faster and improved predictions [7]. Nevertheless, when used, there is another set of issues with the accuracy of the

model and maintaining pipeline performance in equilibrium to scale [8]. Big systems require unique needs in handling data

streams in real-time. They require fault-tolerant architectures, low-latency processing, and horizontal scaling [9]. The systems

achieve fault tolerance by running the data recovery plans and maintaining the system's operation even when some components

are on the verge of breakdown. Also, horizontal scaling systems can handle growing amounts of data that overwhelm typical

monolithic frameworks [10].

Also, the need for high-quality data and high-performance machine learning models for predictive analytics adds to the

complexity of the problem. The research entails studying various real-time data pipeline architectures, such as the Lambda and

Kappa architectures, and the architectures' impact on predictive analytics [11]. The architectures offer the ability to process

batch and real-time data and support continuous model training and updating. Additionally, they ensure consistency

management solutions in that predictions derived from real-time data flow are reliable [12]. The practical challenges of the

implementation of the real-time data pipeline are gigantic. Organizations must meet challenges, including upholding data

consistency across varied ends of the pipeline, making resources available in the system effective, and dealing with

heterogeneity in integrating diverse data sources [13]. System resource management, both in terms of storage and processing

ability, is necessitated in maintaining the level of pipeline performance at a consistent rate, especially for cases involving

unpredictable data sizes and sizes of changing data. Dynamic adjustment of resources based on demand is necessary to maintain

the system as responsive and efficient.

Examples of real-time data pipelines in e-commerce, healthcare, and finance illustrate how real-time data pipelines are used to

generate predictions that will be used in decision-making and operations. For example, in e-commerce, real-time data pipelines

are utilized to suggest products to customers based on the users' interaction with the website [14]. In medicine, real-time data

pipelines are employed to monitor patient vitals and make medical decisions based on input received via wearable devices.

Similarly, real-time data pipelines are employed in finance to identify fraudulent transactions and provide real-time risk scores

[15]. By focusing on predictive analytics in big systems, this paper will try to contribute toward planning and building real-

time data pipelines to develop high-quality predictions in a timely fashion. With a critical examination of literature and case

studies, this paper will provide an overview of methodologies, architectures, and practical concerns with building real-time data

pipelines for predictive analytics for big systems.

2. Review of Literature

Latif et al. [1] proposed a real-time data pipeline integration framework, which is currently of serious concern to businesses

because of real-time insight and decision-making needs. There has been sufficient work on the architectural design decisions

and existing software packages to implement such pipelines, and their advantages and disadvantages have been shown. Real-

time streams usually contain limited components: data ingestion, stream processing, storage, and analytics. These components

directly influence the resultant predictive models' efficiency, scalability, and reliability. As these systems improve and mature

over time, they must be optimized for low latency and high throughput to process more data. Advanced management methods

must also deal with real-time analytics usage in data pipelines regarding error handling and processing time optimisation.

Offering in real-time without compromising quality has been a top agenda for most projects. Accurate pipeline design is,

therefore, essential to identify the extent to which a system can be scaled to fulfil changing requirements.

Rahman et al. [2] also covered the Lambda architecture of Nathan Marz as one of the most popular means of constructing real-

time data pipelines. It has three layers, namely the batch layer, the speed layer, and the serving layer. The batch layer handles

historical data, the speed layer handles real-time data, and the serving layer utilizes both data for making predictions. One of

the strengths of Lambda architecture is that it supports real-time and batch processing of the data so that the predictions are

based on the latest data. However, such an architecture is difficult to maintain and can be associated with redundant data

179

Vol. 2, No.4, 2024

processing. Although it is good, its trend is to have greater cost of operation and less time-to-market for new features.

Alternatives reserve this approach to simplicity, i.e., Kappa architecture reduces the cost of operations by excluding the batch

layer. It is simple to manage but may be an even greater hindrance to processing large data.

Che et al. [3] suggested that the Lambda architecture replace the Kappa architecture. The Kappa model simplifies the Lambda

model by not including the batch layer and reducing it only by stream processing. Real-time data is processed here through a

single stream processing engine; therefore, it is simpler, and the processing process is simple, too. Kappa is simpler but may

have extra resources for real-time bulk data processing. Kappa does all this in one pipeline, whereas Lambda uses batch and

stream processing systems. This minimizes fewer moving parts and a more integrated process for data working. However, this

lower complexity is at the expense of batch processing workload manageability flexibility. The Kappa model would need

sophisticated fault tolerance and state management techniques to ensure proper and reliable real-time data processing.

Xing et al. [5] discussed machine learning models and real-time data pipeline integration. Machine learning algorithms are

trained from past data in these systems and executed in real time to make predictions. The marriage of machine learning and

data streams allows the system to update models constantly with new data. This is beneficial when implemented in application

environments like fraud detection, recommendation systems, and predictive maintenance. Because with ongoing retraining of

models whenever new data is present, such systems can improve their prediction accuracy over some time. However, it is at

the cost of having controlled management of the training pipeline to prevent problems like model drift, where the performance

of a model is decreased because of shifts in the underlying data distribution. Methods like model monitoring and online learning

are typically used to offset this. Making the machine learning models operate data in real time without inflicting too much

latency on the system is also critical.

Siddique et al. [8] contributed to frameworks and tools for building real-time data pipelines. Some top-notch technologies used

to construct fault-tolerant and scalable data pipelines are Apache Kafka, Apache Flink, and Apache Spark Streaming. These

frameworks constitute the infrastructure for real-time analytics, stream processing, and data ingestion requirements. Apache

Kafka, for example, is a distributed messaging system for high-throughput data transport, while Apache Flink is a low-latency

stream processing engine with high-level event processing. Apache Spark Streaming is a scalable, high-throughput, fault-

tolerant data stream processing system. All the tools have roles in solving the scalability and fault tolerance issues, which are

fundamental in making real-time data pipelines efficient. Choosing an appropriate combination of tools relies on the individual

requirements of the use case, i.e., data volume, processing rate, and system complexity. Thus, knowing the pros and cons of

each tool helps optimize the overall functioning of real-time data processing workflows.

Li et al. [9] found issues in real-time data pipelines, i.e., fault tolerance, scalability, and consistency. Scalability, fault tolerance,

and data consistency are crucial for the correctness of data processing in real-time so that it is not erroneous and not behind in

predictive analytics accuracy. Consistency of data has some remedies, e.g., message deduplication and watermarking, proposed

to it. Similarly, fault tolerance enhancement methods such as state management and checkpointing have been suggested. Such

methods are intended to enforce appropriate information processing even in case of failure, i.e., network failure or system crash.

Consistency within distributed systems in a pipeline could be hard to achieve, particularly where data are consumed and

processed at high rate volumes. Solutions for state management and failure recovery have thus been introduced to reduce

downtime and data loss. Fault tolerance mechanisms must ensure reliability and stability in real-time data pipelines, most

urgently at the time of scale. Ali and Choi [12] polled current issues with real-time data pipelines, like model drift and latency,

that determine the quality of predictions.

In systems of monumental scale, the size of the data itself can cause latency, and low-quality predictions can be caused by

model drift or data quality. Additionally, the intricacy of the real-time data pipeline may make its deployment at scale futile.

These problems are solved by optimizing the data processing efficacy, data quality, monitoring mechanisms, and realignment

over model drift over time. These problems must be solved for real-time predictive model salience and performance to be

achieved. Model monitoring software and retraining pipelines are normally applied to detect and realign model drift.

Additionally, latency reduction in real-time pipelines is similar to the optimization of predictive analytics, machine learning

models, and data pipelines such that the response becomes instantaneous and valuable. Abdallah et al. [13] emphasized that

further studies have to be conducted so that predictive data pipelines have to be optimized.

They recommended that the upcoming research identify means of tackling scalability, quality of data, and integration of real-

time machine learning challenges to achieve maximum overall predictive analytics performance on large systems. Large data

management methods without impacting performance will form the core of the architecture of such systems. Furthermore,

scientists are working towards mechanisms for enhanced integration of real-time data and machine learning models, such as

model adaptation and online learning. Enhancing the quality of real-time data is also a need in future studies because

inconsistencies or errors in data can significantly affect the accuracy of predictions. Therefore, new solutions are needed to

utilize real-time data processing and machine learning algorithms capable of learning dynamically to accommodate flowing

180

Vol. 2, No.4, 2024

streams of data that change [14]. The need to keep innovating and evolving in developing such systems was emphasized in

predictive analytics for real-time data pipeline research.

They indicated that it would be necessary to overcome the limitations of real-time data processing and combine machine

learning to fulfil predictive capability. The report emphasized that predictive analytics can deliver immeasurable value to

finance, healthcare, and manufacturing by offering timely decision-making insights. However, such systems must be

implemented cautiously when choosing proper algorithms, data storage models, and real-time analytics platforms. In addition,

making the pipeline fault-tolerant and scalable becomes critical so that its performance isn't compromised at production usage.

Integrating real-time analytics with decision-making will revolutionize organizations by making it possible for them to respond

faster to altered conditions [15]. Requested the pipeline architecture and frameworks for real-time data that can offer maximum

performance and scalability. Other architectures that can address the need for real-time analytics and predictive modelling in

large-scale systems might be investigated more in the future. Creating new infrastructure, which would natively support

machine learning algorithms, would be one way in which real-time data pipeline capacity can effectively be expanded. Apart

from this, there is also the need to enhance data quality, consistency, and effectiveness of data processing using such pipelines.

As firms make the transition only to collect more data in ginormous quantities, optimizing data pipelines becomes the need of

the hour to optimize all the possible for real-time analytics. This study will generate innovations enabling real-time data

pipelines to scale appropriately and provide timely, actionable information to end-users.

3. Methodology

The research methodology of this book is a blend of theoretical research, system development, and empirical case studies. We

started with a comprehensive literature review to gain insight into the available paradigms, tools, and architectures of real-time

data pipelines for predictive analytics. This helped us identify the significant research gaps and outline the roadmap for

developing an effective real-time data pipeline. For our design process, we utilized a case-study model to apply a test pipeline

architecture to existing prevailing stream processing systems such as Apache Kafka for data intake, Apache Flink for real-time

computations, and Apache Spark for analysis. They were selected based on fault tolerance, scalability, and applicable usage in

business deployments. We built the pipeline to process high volumes of streaming data from diverse sources, mimic real-time

predictive analytics, and track system performance in latency, throughput, and prediction accuracy. We integrated machine

learning models into the pipeline for real-time prediction and tested the system on a large e-commerce platform dataset. System

technical performance and prediction accuracy were used as the metric of assessment. These included performance metrics like

processing time, prediction latency, and accuracy. We also compared how different architecture designs (Kappa versus

Lambda) influenced big data and real-time prediction system scalability.

Figure 1: Ingestion and processing of Real-Time data with Kafka and Druid [16]

Figure 1 presents an end-to-end real-time data ingestion and processing with Kafka and Druid. In this case, a few producers

generate data streams that get published to a Kafka Topic. Since Kafka is a distributed messaging system, it tears the data into

numerous Partitions (i.e., Partition 0, Partition 1. Partition N), and there can be parallel processing of incoming data streams.

Partitions ensure high performance and scalability because data from all producers gets dispersed across partitions. Real-Time

Ingestion Tasks ingest the partitions separately in Druid, whereas Ingestion Task 0, Task 1, and the remaining ones ingest and

process data in real-time. Druid's real-time ingestion layer pipes the data in and normalizes it for query optimization. Processed

data is available today to query, enabling real-time analysis and insights. The Historical data layer of Druid holds the processed

data for long-term retention, providing a historical perspective of the data that could be consumed for additional aggregations

and analysis. Both these layers—history and real-time—simultaneously provide an uninterrupted experience for batch-type and

real-time queries. Architecture must be fault-tolerant and highly scalable and, therefore, must be applied in applications for

181

Vol. 2, No.4, 2024

high-speed data processing and constructing insights close to real-time, i.e., report systems, analysis systems, and monitoring

systems.

3.1. Data Description

Data used in this work are of an online web shop, e.g., real-time transactional data such as customer behaviour, product

inquiries, and purchase transactions. This data set was selected because it is dense and complex, with time-series, categorical,

and continuous numerical data. The data has been gathered over several months, with high-frequency events like page views

and product interactions recorded in near real-time. This data best reflects the difficulties in handling high-speed and high-

volume data for predictive analytics. Customer purchase behaviour predictive model and product recommender model training

were done with the e-commerce dataset. Pre-processing eliminated the noise from data, missing value handling was done, and

model predictions were validated using a train set and test set of datasets.

Figure 2: Kafka and Druid for real-time data streaming and ingestion pipeline

One example of ingestion and streaming architecture for real-time data is Figure 2, which comprises data producers, Kafka,

ingestion jobs, and Druid storage. There are three data producers (Producer 1, 2, and 3) generating streaming data and publishing

it to a Kafka topic. The Kafka topic is split into multiple partitions (Partition 0 to Partition N), which split the data load. Each

partition has an ingestion task within Druid, which is used to ingest and process the partitioned data. Ingestion tasks (Ingestion

Task 0, 1, and M) ingested the data into the query system of Druid, which again processes the data. Processed data is cached in

historical storage for future use and analysis. It facilitates real-time data ingestion and processing of big data with Kafka and

Druid and facilitates cost-effective data processing in new streaming applications.

4. Results

The results achieved due to the deployment and testing of the real-time data pipeline used in processing large-scale data for

predictive analysis are described in the results category. In all our experiments, we quantified the system performance on several

important parameters like prediction accuracy, processing time, and latency. Our primary objective was to identify the system

performance under different operating conditions and how well Lambda and Kappa architectures can handle vast amounts of

big data in real-time prediction scenarios. In particular, we tested whether the system could support multiple data loads, e.g.,

how it would perform when there was a high influx of data input. The data ingestion rate can be given as:

𝑅𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = ∑ (𝑁
𝑖=1

𝐷𝑖

𝑇𝑖
) (1)

Where 𝑅𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 is the total ingestion rate, 𝐷𝑖 is the data size from partition 𝑖, and 𝑇𝑖 Is the time taken for ingestion from

partition 𝑖.
Table 1: Performance metrics for Lambda and Kappa architectures

Parameters Lambda

Architecture

Kappa

Architecture

Lambda

(Optimized)

Kappa

(Optimized)

Baseline

Performance

Throughput (TPS) 1000 1200 1400 1600 800

Latency (ms) 50 30 40 25 60

Error Rate (%) 1.5 1 1.2 0.8 2

182

Vol. 2, No.4, 2024

Fault Tolerance (%) 95 90 97 94 80

Processing Time (ms) 120 80 100 75 150

Table 1 compares Lambda and Kappa architectures' performance attributes in the Standard and Optimized instances. It details

throughput, latency, error rate, fault tolerance, and processing time. Throughput is transactions per second (TPS) handled by

the system, with Lambda and Kappa architectures equal by default, but the Kappa architecture is superior to Lambda in

optimization. Latency is the time each transaction is processed (in milliseconds), with reduced latency processed in default and

optimized modes by Kappa, i.e., quicker processing. The error rate measure is utilized to measure per cent errors within

transactions, with Lambda being more fault-tolerant but having a larger error rate than Kappa when unadulterated. Value in

fault tolerance is based on whether the system will continue working despite failure. Lambda architecture fares better in fault

tolerance for double-layer design, albeit more in processing time. Lastly, processing time shows how long the system processes

data, and the optimized Kappa performs excellently. This table generally indicates that while the Kappa architecture will be

more throughput and less latency, the Lambda architecture is fault-tolerant. The optimized version of both architectures

performs better than all the criteria, emphasizing optimization for enhanced performance.

This is required to ensure the pipeline's responsiveness and performance under various workloads because big data analytics

typically involves processing big data in real-time. Scalability was confirmed by incrementally loading data loads and tracking

performance counters so the system would run as fast as possible without a whiff of decreased processing speed or prediction

accuracy. In addition to scalability, fault tolerance of the system was our target to test to simulate eventual network or machine

failure and to ensure that the pipeline would rebound from such errors gracefully without high downtime or lost data. This is

particularly critical in real-time applications where performance around the clock is essential, and a single failure causes

massive delays or inaccurate predictions.

The system's capability to learn from such mistakes without impacting the overall system performance negatively was

something we maintained in mind while evaluating. We also verified for system latency since feedback needs to be low-latency

for real-time prediction systems. System performance at predicting and processing with near-zero latency was evaluated by

how long it took to process each dataset and return resulting predictions. Latency is particularly relevant where predictions

must be made in milliseconds, often for time-sensitive applications like fraud detection, real-time pricing, or autonomous. We

also validated prediction accuracy or the extent to which the system can produce correct outputs given input data. We

determined accuracy by comparing predictions with a ground truth set or known results. This allowed us to see the effectiveness

of the output in estimating values and providing insight into how reliable and efficient the pipeline would be for real

applications. Other than these figures, a few qualitative tests were used to quantify overall user experience, like the smoothness

of integration with systems installed, how stable the system was, and how simple it was to understand the results delivered by

the predictions. Throughput calculation for Kafka is:

𝑇𝑘𝑎𝑓𝑘𝑎 =
∑ (𝑁
𝑖=1 𝑃𝑖)

𝐵
 (2)

Where 𝑇𝑘𝑎𝑓𝑘𝑎 Is the throughput of the Kafka topic, 𝑃𝑖 Is the number of partitions, and 𝐵 is the number of brokers handling the

partitions.

Figure 3: Throughput vs latency for lambda and kappa architectures

183

Vol. 2, No.4, 2024

Figure 3 illustrates the throughput and latency of the Lambda and Kappa architectures and the trade-off between the two

performance measures. The throughput (in transactions per second) is indicated by the blue bars, and the red line indicates each

architecture's latency (in milliseconds). Throughput improves as it moves from baseline performance to both optimized versions

of architectures, and it is apparent from the graph that Kappa performs better than Lambda in throughput in both optimized and

normal situations.

The optimized Kappa architecture also possesses the greatest throughput of 1600 TPS compared to Lambda. Latency is shown

in the red line, and Kappa architecture is also minimal in basic and optimized forms than Lambda. Optimized Kappa architecture

possesses the lowest latency of 25 ms, which means it processes the transactions quickly. Lambda, though fault tolerant (not

depicted in the figure), is of higher throughput and latency, especially in the default mode. Baseline performance is the starting

point of both architectures before optimization with relatively low throughput and high latency. This graph shows that Kappa

architecture is optimum in throughput and latency, and the best part of Lambda is fault tolerance and storing history, which is

not necessarily a quite clear conclusion from this graph but is the biggest contributor in large use cases. Real‐time data

processing in Druid is given below:

𝑃𝑑𝑟𝑢𝑖𝑑 = ∑ (𝑀
𝑗=1

𝑅𝑗𝑇𝑗

𝑆𝑗
) (3)

Where 𝑃𝑑𝑟𝑢𝑖𝑑 is the total data processed in Druid, 𝑅𝑗 Is the rate of data ingestion in the task, 𝑇𝑗 Is the processing time for tasks

and 𝑆𝑗 Is the storage capacity allocated to task j.

Table 2: Prediction accuracy for different data streams

Data Stream Model 1 Accuracy

(%)

Model 2

Accuracy (%)

Model 3

Accuracy (%)

Model 4

Accuracy (%)

Model 5

Accuracy (%)

Transactional Data 89.5 85 91.3 88 90.2

Customer Data 87.2 83.7 88.5 85.3 89

Product Data 92.1 90.2 93.4 91.7 92.5

Social Media Data 84.3 82.5 86 81 85

Web Logs 88.4 86.1 89.5 87.2 90.3

Table 2 shows the prediction accuracy of five machine-learning models for different data streams. Accuracy is shown as a

percentage of correct prediction by each model, and the table shows that performance varies when used for different types of

data. Product data generates the best-quality predictions for all the models, with Model 3's best performance (93.4%) on this

data stream since it suggests that clearly defined, structured data will most likely generate accurate predictions. Transactional

data is also the most accurate, and Model 3 and Model 5 are the most accurate. Social media data, being noisy and unstructured,

is less accurate, and Model 4 (81.0%) is the least accurate. The customer data stream, which consists of less structured and

more heterogeneous data, is also moderately precise. Weblog data, as data, is structured but noisy, and thus accuracy is a notch

down from product or transaction data, and Model 5 is optimal with accuracy.

Figure 4: Prediction accuracy over time for real-time data pipeline

184

Vol. 2, No.4, 2024

The table will be able to determine quantitatively how data type and data quality contribute towards achieving prediction

precision. Clean and good-looking data (product data) will perform better, and unstructured data like social media need to be

pre-processed or have the model tuned further to perform better in accuracy. The prediction accuracy of machine learning

models is:

𝐴 =
1

𝑁
∑(

𝑁

𝑘=1

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑘 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑘
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑘 + 𝐹𝑎1𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑘 + 𝐹𝑎1𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑘 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑘

)

 (4)

Where 𝐴 is the accuracy of the model, True 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑘, True 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑘 , False 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑘, and False 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑘 Are

counts of respective outcomes for the k‐th prediction.

Figure 4 provides five machine learning model prediction precision for different data streams. Each curve reflects the precision

of a particular model for each of the five data stream types: transaction data, customer data, product data, social data, and

weblogs. As one can see from the graph, Model 3 always possesses the highest prediction precision for all types, particularly

product data, whose precision is no more than 93.4%. The product data stream is more accurate overall for all models, as it

indicates that clean data structured correctly will be more likely to provide better predictions. Social media data is noisy, less

structured, and always worse than any other stream, with Model 4 being the worst (around 81%).

Such low precision for social media data indicates how difficult it is to work with unstructured or noisy data in predictive

analytics. Web logs and transactional data are of mid-precision, and Model 5 is a bit more accurate in web logs (90.3%) than

in transactional data. The narrative accommodates the necessity for well-structured and quality data to make quality predictions

possible, whereby higher structure data streams (e.g., product information) result in better quality predictions, and less structure

or noisy data require preprocessing or model optimisation to be better quality. Heterogeneity among models and data streams

shows how challenging the selection of the right model to apply for varied forms of data is. Fault tolerance in Lambda

architecture can be framed as:

𝐹𝑙𝑎𝑚𝑏𝑑𝑎 =
1

𝑁
∑ (𝑁
𝑖=1

𝐶𝑖

𝐶𝑖+𝐹𝑖
) (5)

Where 𝐹𝑙𝑎𝑚𝑏𝑑𝑎 is the fault tolerance, 𝐶𝑖 Is the correct data processed by layer 𝑖, and 𝐹𝑖 Is the faulty or missing data in layer 𝑖.
These qualitative aspects assisted in providing a generally balanced perspective toward the useability of the system in practical

situations and the capacity to support end-users needs. Lambda vs. Kappa architecture was an important component of our

comparison. The Lambda and the Kappa architecture possess the stream and batch processing layer, but Kappa integrates both

in a single stream of batch processing and real-time data. We compared the two architectures and noticed that one exhibited

better performance concerning speed, maintenance, and overall gigantic volume of dataset processing efficiency in the case of

predictive analytics.

Layering partitioning of batch and real-time processing under Lambda architecture was leaning towards more flexibility but

perhaps at the cost of higher-order complexity and additional maintenance. Otherwise, Kappa architecture came to simplify the

processing with a midstream model processing that might lead to less complex scalability when additional cost occurs, possibly

due to being less flexible in specific applications. The advantages and disadvantages of architecture were affirmed, based on

research, on where they are applied. Lambda architecture would be an example: it got its moment in data consistency and

historical processing use cases where data.

In contrast, Kappa's architecture was better suited for real-time analytics use cases since it had a less complex design and could

process continuous data streams. System performance overall also depended on the underlying infrastructure, i.e., storage and

computing hardware and software used. By running this under various configurations, we could identify the controller

configuration for each architecture, facilitating system fine-tuning according to performance. The testing of standalone

components of the real-time data pipeline revealed some important facts about the performance of Lambda and Kappa

architectures. Both architectures would provide high accuracy and low latency real-time prediction but vary based on specific

application needs such as data processing, fault tolerance, scalability, and maintainability.

5. Discussion

The data in the tables and charts strongly suggest Kappa and Lambda architecture behaviour, particularly throughput, latency,

fault tolerance, and predicted accuracy. The Kappa architecture's throughput is greater and has less latency than the Lambda

architecture at every stage because, from the first chart, it could be seen at any stage. The Kappa architecture performs better,

185

Vol. 2, No.4, 2024

particularly when optimized, then Lambda at 1600 transactions per second (TPS) compared to the 1400 TPS of Lambda. This

shows that Kappa's effective method of handling real-time data is superior and can handle more transactions. Kappa architecture

also has mammoth latency reduction with the minimum latency of 25 milliseconds maximized to the highest compared to

Lambda and 40 milliseconds if it is set to its best and higher in the default. That would make Kappa more suitable for high-

throughput, low-latency applications, thus making it suitable for such use cases where real-time data processing and instant

insights like fraud detection, recommendation engines, or IoT analytics are required. However, Lambda architecture, with

greater latency, is fault-tolerant and accommodates batch and real-time data. This is of the utmost importance to all such

applications dealing with history data processing and real-time streams because it guarantees prediction and analysis based on

new data.

In contrast, reliability is guaranteed in case of failure or outages. Lambda's robustness is also evident in the tables, wherein it

performs better than Kappa with 95% robustness as opposed to Kappa at 90% in the usual environment and 94% when

optimized. Although fault tolerance is an excellent solution for mission-critical operations, which must be able to keep

processing, it also comes with the cost of greater latency, e.g., Lambda, which involves layers of processing real-time and batch

data. In the case of most data streams, the prediction accuracy of machine models is observed through the outcomes where

Model 3 tends to do best for any data. Product data is the best-performing predictor for all models at a frequency of 93.4%

accuracy, indicating that clean and organized data tends to get predicted more accurately. Transactional data and web log data

also perform well with high accuracy, whereas Model 5 performs slightly better in weblogs at an accuracy of 90.3%. Social

media data also has the worst prediction accuracy, particularly Model 4, not functioning in the case of noisy or unstructured

data with an accuracy of 81%. It shows the inherent limitation of Lambda and Kappa architectures in providing space for noisy

or unstructured data within real-time systems. Whereas Kappa's low-latency architecture maintains its promptness to rapid

processing, it will remain bottlenecked when poor data quality, e.g., noise and inconsistency, exists, unfavourable for

predictability accuracy.

On the other hand, Lambda's real-time and historical data processing can better allow an end-to-end model to make accurate

predictions where the data is structured or preprocessed for bigger windows in time. Apart from that, overall system

performance in such systems means Kappa's optimized configuration is superior to throughput and latency and thus is a more

viable alternative for high-speed data processing needs. However, Lambda architecture is fault-tolerant, offers better fault

tolerance, and is suitable for systems requiring simultaneous batch and real-time data processing. On the issue of scalability,

both models are positive, but while Kappa's minimalist thin form, specially created to support real-time handling of streams,

will scale more towards high-volume systems without experiencing the delay that accompanies processing perhaps of size

around standalone batch-processing layers, Lambda with its exceedingly high fault-tolerance would not be able to scale because

it handles tremendous amounts of data in having too much baggage to manage about batch and real-time processing.

The tables and graphs show that the choice between Lambda and Kappa will largely be a function of usage. In low-latency real-

time systems where prediction is extremely important and needs to take place in time, Kappa would be the better option since

it provides greater throughput and less latency. However, the Lambda architecture will develop more accurate systems for

prediction-based applications based on forecasts or hybrid analysis of past and real-time data. Aside from raw numbers of

performance, even during best-tuned performances by both architectures, there should be other procedures in place at Kappa

in processing noiseful, dirty stream data sources that would counteract its end degree of accuracy overall in its predictions.

Therefore, while designing a real-time running data pipeline, the compromises among prediction accuracy, fault tolerance,

latency, and scalability must be thoroughly known before choosing the best architecture to meet the system's specific needs.

6. Conclusion

Briefly, the research underscores the basic importance of real-time data pipelines in simplifying predictive analytics,

particularly for large systems. Being able to process and analyze data in real-time is becoming increasingly the solution for

companies that must draw conclusions and make decisions regarding data within a limited time frame. The outcome of this

research reflects the strengths and weaknesses of the Lambda and Kappa architectures. The Lambda architecture, with the

limited ability to process both batch and streams, is most suited to systems where data accuracy and consistency are a priority,

even though it comes at the cost of added complexity. The Kappa architecture also possesses a simpler mechanism in the shape

of one stream of data processing and, therefore, is optimally suited for use in systems where minimum latency and quicker

processing are needed. However, the architecture selection must be based on system requirements like data size, latency needs,

and fault tolerance. By integrating machine learning algorithms into real-time data streams, companies can make accurate and

timely predictions that greatly improve decision-making. However, issues are still present, especially related to the consistency

of data and scalability of the system. These must be resolved through improved design and optimization techniques for best

performance and efficiency, particularly at scale.

186

Vol. 2, No.4, 2024

6.1. Limitations

While the research is enlightening on the feasibility of real-time pipelines for data, some limitations must be considered. The

research was successfully conducted as a single e-commerce website case study. Although the case study was useful, it is not

necessarily representative of the specializations and differences in other sectors, e.g., healthcare or finance, where the nature of

data and requirements for processing can be very different. This restricts the potential to generalize the findings to other sectors.

Second, the scalability testing was done in a lab setting and may not indicate the complexities of dealing with large data sets

under various network conditions or more stressful environments. This is a key consideration, as the scalability of an actual-

time data pipeline is paramount to its long-term sustainability, particularly in growth markets. Apart from that, the study was

on the measurement of latency and throughput and less on other important parameters like resource usage, overhead of

operation, or maintenance cost. These are worth remembering when utilizing all phases of an authentic real-time data pipeline

life cycle. Further introspective thinking on these aspects can provide a better vision of trade-offs in pipeline architecture

selection. Hence, there is a stronger demand for future research to bridge such limitations and project a broader view of the

problems and solutions to real-time data pipeline optimization.

6.2. Future Scope

The future potential for this work is full of promise for developing real-time data pipelines in other industries. As more

industries such as healthcare, finance, and manufacturing increasingly depend on data-driven decisions, real-time analytics can

bring in a new era of efficiency and accuracy gains. Future work can explore methods by which pipelines for live data can be

customized for any of these industries with considerations of data privacy effects, compliance requirements, and system

security. In healthcare applications, for instance, patient wellness can be tracked in real-time via pipelines. In contrast, pipelines

are used in anti-fraud monitoring systems and high-frequency trading systems in finance. In addition, cutting-edge machine

learning methodologies such as deep learning would enrich real-time data pipelines. The learned models to address advanced

patterns in large datasets would also improve the predictive ability of the system, especially for anomaly prediction and

detection areas. Finally, automation is becoming more and more demand for big systems. Follow-up studies might examine

how pipeline optimization tasks can be automated with minimal or no human intervention but maintain the process from being

less efficient and stable. Automation would most likely enable deployments earlier and at a cheaper cost of operations, thus

enabling organizations to scale their systems better and save on costs in the long run. These future research streams would

enable more scalable, efficient, and flexible real-time data pipelines for industries.

Acknowledgment: The author gratefully acknowledges the support and valuable insights provided by the Department of Cyber

Security, Truist Bank Financial, California, United States of America. Their guidance and technical expertise were instrumental

in shaping the direction and depth of this research.

Data Availability Statement: The data for this study can be made available upon request to the corresponding author.

Funding Statement: This manuscript and research paper were prepared without any financial support or funding.

Conflicts of Interest Statement: The author has no conflicts of interest to declare.

Ethics and Consent Statement: This research adheres to ethical guidelines, obtaining informed consent from all participants.

References

1. J. Latif, M. Z. Shakir, N. Edwards, M. Jaszczykowski, N. Ramzan, and V. Edwards, “Review on condition monitoring

techniques for water pipelines,” Measurement, vol. 193, no. 3, p. 110895, 2022.

2. I. U. Rahman, H. J. Mohammed, M. F. Siddique, M. Ullah, A. Bamasag, T. Alqahtani, and S. Algarni, “Application

of membrane technology in the treatment of waste liquid containing radioactive materials,” J. Radioanal. Nucl. Chem.,

vol. 332, no.10, pp. 4363–4376, 2023.

3. T.-C. Che, H.-F. Duan, and P. J. Lee, “Transient wave-based methods for anomaly detection in fluid pipes: A review,”

Mech. Syst. Signal Process., vol. 160, no.11, p. 107874, 2021.

4. A. Rai, Z. Ahmad, M. J. Hasan, and J.-M. Kim, “A Novel Pipeline Leak Detection Technique Based on Acoustic

Emission Features and Two-Sample Kolmogorov–Smirnov Test,” Sensors, vol. 21, no.24, p. 8247, 2021.

5. J. Xing, H. Meng, and X. Meng, “An urban pipeline accident model based on system engineering and game theory,”

J. Loss Prev. Process Ind., vol. 64, no. 3, p. 104062, 2020.

6. X. Miao, H. Zhao, and Z. Xiang, “Leakage detection in natural gas pipeline based on unsupervised learning and stress

perception,” Process Saf. Environ. Prot., vol. 170, no. 2, pp. 76–88, 2023.

187

Vol. 2, No.4, 2024

7. T. Xu, Z. Zeng, X. Huang, J. Li, and H. Feng, “Pipeline leak detection based on variational mode decomposition and

support vector machine using an interior spherical detector,” Process Saf. Environ. Prot., vol. 153, no. 9, pp. 167–177,

2021.

8. M. F. Siddique, Z. Ahmad, N. Ullah, S. Ullah, and J.-M. Kim, “Pipeline Leak Detection: A Comprehensive Deep

Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework,” Sensors, vol. 24,

no.12, p. 4009, 2024.

9. S. Li, Y. Song, and G. Zhou, “Leak detection of water distribution pipeline subject to failure of socket joint based on

acoustic emission and pattern recognition,” measurement, vol. 115, no.2, pp. 39–44, 2018.

10. S. Park, D. Yeo, and J. H. Bae, “Unsupervised Learning–Based Plant Pipeline Leak Detection Using Frequency

Spectrum Feature Extraction and Transfer Learning,” IEEE Access, vol. 12, no.6, pp. 88939–88949, 2024.

11. M. F. Siddique, Z. Ahmad, and J.-M. Kim, “Pipeline leak diagnosis based on leak-augmented scalograms and deep

learning,” Eng. Appl. Comput. Fluid Mech., vol. 17, no.1, p. 2225577, 2023.

12. H. Ali and J. Choi, “A Review of Underground Pipeline Leakage and Sinkhole Monitoring Methods Based on Wireless

Sensor Networking,” sustainability, vol. 11, no.15, p. 4007, 2019.

13. A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system: A survey,” J. Netw. Comput. Appl., vol. 68, no.6,

pp. 90–113, 2016.

14. X. Miao, Y. Zhang, L. Wang, and H. Zhang, “Advanced techniques for pipeline leak detection: A critical review," J.

Hazard. Mater., vol. 405, p. 124233, 2021.

15. J. Latif, R. Khan, S. Ali, M. Z. Shakir, V. Edwards, and N. Edwards, "Leakage detection in underground pipelines: A

systematic review," measurement, vol. 89, pp. 125–135, 2016.

16. M. Morrissey, “Real-time analytics: Building blocks and architecture,” Imply, 18-May-2023. [Online]. Available:

https://imply.io/blog/real-time-analytics-building-blocks-and-architecture/. [Accessed: 12-Sep.-2023].

188

